Jd 98X =YL

Buidepsiul pue ‘ubisep ‘ebenbue| A|quissse

fifth
edition

Prentice Hall

Dec Hex Bin
00000010

ORG ; THREE
Assembly
Language
Programming

The x86 PC

assembly language,
design, and interfacing
fifth edition

MUHAMMAD ALI MAZIDI
JANICE GILLISPIE MAZIDI
DANNY CAUSEY

OBJECTIVES

this chapter enables the student to:

e Flag concepts

e |nstruction Types in 8086

e Assembly language program basics.

e Flow charts summary

e Code simple Assembly language instructions.

e Assemble, link, and run a simple Assembly language
program.

e Procedures

e Code control transfer instructions such as conditional
and unconditional jumps and call instructions.

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

e Many Assembly language instructions alter flag
register bits & some instructions function differently
based on the information in the flag register.

e The flag register is a 16-bit register sometimes
referred to as the status register.

— Although 16 bits wide, only some of the bits are used.
e The rest are either undefined or reserved by Intel.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

e Six flags, called conditional flags, indicate some
condition resulting after an instruction executes.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 | 0
RTRJR]JRJOFDFJIFJTF]SFJZF] U JAFJ U JPF] U JCF

R = reserved SF = sign flag

U = undefined ZF |= zero flag

[OF|= overflow flag AF|= auxiliary carry flag

DF|= direction flag PF |~ parity flag

IF ¥ interrupt flag ICF|= carry flag

TF|= trap flag

" These six are CF, PF, AF, ZF, SF, and OF.

" The remaining three, often called control flags, control
the operation of instructions before they are executed.

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

bits of the flag register

e Flag register bits used in x86 Assembly language
programming, with a brief explanation each:

— CF (Carry Flag) - Set when there is a carry out, from d7 after an
8-bit operation, or d15 after a 16-bit operation.

e Used to detect errors in unsigned arithmetic operations.
— PF (Parity Flag) - After certain operations, the parity
of the result's low-order byte is checked.
e If the byte has an even number of 1s, the parity flag is set to 1;
otherwise, it is cleared.
— AF (Auxiliary Carry Flag) - If there is a carry from d3 to d4 of an
operation, this bit is set; otherwise, it is cleared.

e Used by instructions that perform BCD (binary coded
decimal) arithmetic.

_ The x86 PC
Fj_E ARS U_f_'q Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

bits of the flag register

e Flag register bits used in x86 Assembly language
programming, with a brief explanation each:

— ZF (Zero Flag) - Set to 1 if the result of an arithmetic or logical operation is zero;
otherwise, it is cleared.

"~ SF (Sign Flag) - Binary representation of signed numbers uses the most significant bit as the
sign bit.
° After arithmetic or logic operations, the status of this sign
bit is copied into the SF, indicating the sign of the result.
~ TF (Trap Flag) - When this flag is set it allows the program to single-step, meaning to execute
one instruction at a time.
°o _. .. .
Single-stepping is used for debugging purposes.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

bits of the flag register

e Flag register bits used in x86 Assembly language
programming, with a brief explanation each:

— IF (Interrupt Enable Flag) - This bit is set or cleared to enable/disable only
external maskable interrupt requests.

~ DF (Direction Flag) - Used to control the direction of string operations.
~ OF (Overflow Flag) - Set when the result of a signhed number operation is too large, causing
the high-order

bit to overflow into the sign bit.
° Used only to detect errors in signed arithmetic operations.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

flag register and ADD instruction

e Flag bits affected by the ADD instruction:
— CF (carry flag); PF (parity flag); AF (auxiliary carry flag).
— ZF (zero flag); SF (sign flag); OF (overflow flag).

Example 1-10
Show how the flag register is affected by the addition of 38H and 2FH.
Solution:
MOV BH,38H ;BH= 38H
ADD BH,2FH -add 2F to BH, now BH=67TH
38 0011 1000
+ 2F 0010 1111
67 0110 0111
CF = 0 since there is no carry beyond d7 ZF = 0 since the result is not zero
AF = 1 since there is a carry from d3 to d4 SF = 0 since d7 of the result 1s zero
PF = 0 since there is an odd number of 1s in the result

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

flag register and ADD instruction

» Flag bits affected by the ADD instruction:
— CF (carry flag); PF (parity flag); AF (auxiliary carry flag).
— ZF (zero flag); SF (sign flag); OF (overflow flag).

Example 1-11
Show how the flag register is affected by
MOV AL, SCH ; AL=9CH
MOV DH, 64H ; DH=64H
ADD LL,DH ;now AL=0
Solution:
oC 1001 1100
+ 64 0110 0100
00 0000 0000
CF = 1 since there is a carry beyond d7 ZF = 1 since the result 1s zero
AF = 1 since there is a carry from d3 to d4 SF = 0 since d7 of the result is zero
PF = 1 since there 1s an even number of 1s in the result

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

flag register and ADD instruction

|t is important to note differences between 8- and
16-bit operations in terms of impact on the flag bits.

— The parity bit only counts the lower 8 bits of the result
and is set accordingly.

Example 1-12
Show how the flag register is affected by
MOV AX, 34F5H s AX= 34F5H
ADD AX, 95EBH ;now AX= CAEOH
Solution:
34F5 0011 0100 1111 0101
+ 95EB 1001 0101 1110 1011
CAEO 1100 1010 1110 0000
CF = 0 since there 1s no carry beyond d15 ZF = 0 since the result is not zero
AF = 1 since there 1s a carry from d3 to d4 SF = 1 since d15 of the result is one
PF = 0 since there is an odd number of 1s in the lower byte

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

flag register and ADD instruction

e The carry flag is set if there is a carry beyond bit d15
instead of bit d7.

— Since the result of the entire 16-bit operation is zero (meaning
the contents of BX), ZF is set to high.

Example 1-13
Show how the flag register is affected by
MOV BX,AAAAH ;BX= ARAAH
ADD BX,5556H ;now BX= 0000H
Solution:
AAAA 1010 1010 1010 1010
-~ 5556 0101 0101 0101 0110
0000 0000 0000 0000 0000
CF = 1 since there is a carry beyond d15 ZF = 1 since the result is zero
AF =1 since there is a carry from d3 to d4 SF = 0 since d15 of the result is zero
PF = 1 since there is an even number of 1s in the lower byte

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

flag register and ADD instruction

e |nstructions such as data transfers (MOV) affect no flags.

Example 1-14
Show how the flag register is affected by
MOV AX, 94CZH ;AX=94CZH
MOV BX, 323EH ; BX=323EH
ADD AX,BX ;now AX=CT700H
MOV DX, AX ;now DX=C700H
MOV CX, DX ;now CX=C700H
Solution:
94C2 1001 0100 1100 0010
+ 323E 0011 0010 0011 1110
C700 1100 0111 0000 0000
After the ADD operation, the following are the flag bits:
CF = 0 since there is no carry beyond d15 ZF = 0 since the result is not zero
AF = 1 since there 1s a carry from d3 to d4 SF = 1 since d15 of the result is 1
PF = 1 since there 1s an even number of 1s in the lower byte

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

use of the zero flag for looping

e A widely used application of the flag register is the use o
the zero flag to implement program loops.

— Aloop is a set of instructions repeated a number of times
e More on details on LOOPS later!

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

use of the zero flag for looping

e As an example, to add 5 bytes of data, a counter can be
used to keep track of how many times the loop needs to
be repeated.

~ Each time the addition is performed the counter
is decremented and the zero flag is checked.

° When the counter becomes zero, the zero flag is
set (ZF = 1) and the loop is stopped.

MOV CX, 05 ;CX holds the loop count
MOV BX,0200H ;BX holds the offset data address
MOV AL, 00 ;initialize AL
ADD LP: ADD AL,[BX] ;add the next byte to AL
INC BX ;increment the data pointer
DEC CX ;decrement the loop counter
JNZ ADD LP ;jump to next iteration i1f counter
not zero

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

use of the zero flag for looping

e Register CX is used to hold the counter.

— BX is the offset pointer.
e (Sl or DI could have been used instead)

MOV CX, 05 ;CX holds the loop count
MOV BX,0200H ;BX holds the offset data address
MOV AL, 00 ;initialize AL
ADD LP: ADD AL,[BX] ;add the next byte to AL
INC BX ;increment the data pointer
DEC CX ;decrement the loop counter
JNZ ADD LP ;jump to next iteration i1f counter
not zero

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

use of the zero flag for looping

e Al is initialized before the start of the loop

— In each iteration, ZF is checked by the JNZ instruction
e JNZ stands for "Jump Not Zero“, meaning that if ZF =0,
jump to a new address.

e If ZF =1, the jump is not performed, and the instruction
below the jump will be executed.

MOV CX, 05 ;CX holds the loop count
MOV BX,0200H ;BX holds the offset data address
MOV AL, 00 ;initialize AL
ADD LP: ADD AL,[BX] ;add the next byte to AL
INC BX ;increment the data pointer
DEC CX ;decrement the loop counter
JNZ ADD LP ;jump to next iteration i1f counter
not zero

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

use of the zero flag for looping

e JNZ instruction must come immediately after the
instruction that decrements CX.

— JNZ needs to check the effect of "DEC CX" on ZF.

e If any instruction were placed between them, that instruction might
affect the zero flag.

MOV CX, 05 ;CX holds the loop count
MOV BX,0200H ;BX holds the offset data address
MOV AL, 00 ;initialize AL
ADD LP: ADD AL,[BX] ;add the next byte to AL
INC BX ;increment the data pointer
DEC CX ;decrement the loop counter
JNZ ADD LP ; jump to next iteration if counter
not zero

The x86 PC

]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

Addressing Modes

e Register Addressing Mode
— MOV AX, BX
— MOV ES,AX
— MOV AL,BH
e Immediate Addressing Mode
— MOV AL,15h
— MOV AX,2550h
— MOV CX,625

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prent}szall - Upper Saddle River, NJ 07458

Direct Addressing Mode

MOV CX, [address]

Address Memory Instruction
content
01000 8B MOV CX, [1234H]
01001 OE
8088 01002 34
MPU 01003 12
I 0000 [l Ly 01004 XX Next instruction
0100 £5
0200 oS
SS
ES
[BEeD A% Example:
a5 MOV AL,[03]
02000 XX
XXXX cx 02001 XX AL=?
DX) |
02003 FF
SP
BP)
03234 ED Source operand
SI 03235 BE
DI
e The x86 PC : :
PEARSON [y bly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prent}fg-lall - Upper Saddle River, NJ 07458

Register Indirect Addressing Mode

B Address Memory Instruction
< X content
DI 01000 8B MOV AX,[SI]
MOV AX, S| 01001 04
8088 01002 XX Next instruction
I MPU
\ 1 IP
[0000 =
0100 e
0200 20
SS
ES 02000 XX
02001 XX
BEED AX
BX
CX :
———————» 03234 ED Source operand
DX 03235 BE
SpP
BP
1234 2
DI
€O The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Pren'?oHall - Upper Saddle River, NJ 07458

Example for Register Indirect Addressing

e Assume that DS=1120, SI=2498 and AX=17FE show the memory locations

after the execution of:

MOV [SI],AX

DS (Shifted Left) + SI = 13698.
With little endian convention:
Low address 13698 = FE
High Address 13699 - 17

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Pren'21Hall - Upper Saddle River, NJ 07458

Based-Relative Addressing Mode

MOV AH, [252 1+ 1234h

VR » 3AH
BX & _Q
v
AX
DS
1234
e The x86 PC : :
Fj_E ARS U_f_\l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Pren'??—lall - Upper Saddle River, NJ 07458

Indexed Relative Addressing Mode

MOV AH, [$!] + 1234h

content
01000 8A MOV AL, [SI] +1234H
o 01001 84
01002 34
MPU . 01003 12
[ooo0 E 01004 XX Next instruction
0100 =
0200 =
ss
ES
02000 XX
XX xx |Ax 02001 XX
BX '
cX
DX
sP
BP
2000 5l
Di 05234 BE Source operand
(a)
Example: What is the physical address MOV [DI-8],BL if DS=200 & DI=30h ?

- DS:200 shift left once 2000 + DI + -8 = 2028

The x86 PC
© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

P_E ARS U_H Assembly Language, Design, and Interfacing - -
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Pren23Ha11 - Upper Saddle River, NJ 07458

Based-Indexed Relative Addressing Mode

e Based Relative + Indexed Relative
e We must calculate the PA (physical address)

CS
SS BX Sl 8 bit displacement
PA= DS : BP +DIl + 16 bitdisplacement

ES

\
MOV AH,[BP+S51+29] The register
or order does not
MOV AH, [S1+29+BP] > matter
or
MOV AH,[SI][BP]+29

J/
The x86 PC

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Pren'?ﬂHall - Upper Saddle River, NJ 07458

]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

Based-Indexed Addressing Mode

ure 4-4.

s base + index + 0618
placement

dressing mode can

used to access a

rticular element in a

rticular record of an

ray.
MOV BX, 0600h 0614
MOV SI, 0010h ; 4 records, 4 elements each.
MOV AL, [BX + S| + 3] Element 3, record 4
OR Qa0

v 0608
T

4 bytes/record

MOV BX, 0600h
MOV AX, 004h ; x .
MOV CX,04;

MUL CX

MOV SI, AX

MOV AL, [BX + Sl + 3]

BX, o e 0600

_ The x86 PC
PEARSON [y Iy Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Pren?ﬂ-lall - Upper Saddle River, NJ 07458

Summary of the addressing modes

[BP][SI or DI]+disp

Addressing Mode Operand Default Segment
Register Reg None
Immediate Data None
Direct [offset] DS
Register Indirect [BX] DS
[SI] DS
[DI] DS
Based Relative [BX]+disp DS
[BP]+disp SS
Indexed Relative [DI]+disp DS
[SI]+disp DS
Based Indexed [BX][SI or DI]+disp DS
Relative SS

The x86 PC

]-‘j_E ARS U_H Assembly Language, Design, and Interfacing

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Pren'26Ha11 - Upper Saddle River, NJ 07458

16 bit Segment Register Assignments

Segment CS DS ES SS
Registers
Offset IP SI,DI,BX SI,DI,BX SP,BP
Register
Type of Memory Default Segment Alternate Segment Offset
Reference
Instruction Fetch CS none IP
Stack Operations SS none SP,BP
General Data DS CS,ES,SS BX, address
String Source DS CS,ES,SS SI, DI, address
String Destination ES None DI
The x86 PC
m Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
rey By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Pren'27Hall - Upper Saddle River, NJ 07458

Segment override

Instruction Examples Override Segment Used Default Segment
MOV AX,CS:[BP] CS:BP SS:BP

MOV DX,SS:[SI] SS:SI DS:SI

MOV AX,DS:[BP] DS:BP SS:BP

MOV CX,ES:[BX]+12 ES:BX+12 DS:BX+12

MOV SS:[BX][DI]+32,AX SS:BX+DI+32 DS:BX+DI+32

The x86 PC

P

_E"!" RS D_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Pren'?BHall - Upper Saddle River, NJ 07458

Example for default segments

e The following registers are used as offsets. Assuming that the default
segment used to get the logical address, give the segment register
associated?

a) BP b)DI c)IP d)SI, e)SP, f)BX

e Show the contents of the related memory locations after the execution of
this instruction

MOV [BP][SI]+10,DX
if DS=2000, SS=3000,CS=1000,SI=4000,BP=7000,DX=1299 (all hex)

SS(0)=30000
30000+4000+7000+10=3B010

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Pren2g1a11 - Upper Saddle River, NJ 07458

Assembly Language

e There is a one-to-one relationship between assembly and
machine language instructions

e What is found is that a compiled machine code
implementation of a program written in a high-level
language results in inefficient code

— More machine language instructions than an assembled version of
an equivalent handwritten assembly language program

e Two key benefits of assembly language programming
— It takes up less memory

— |t executes much faster

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson PrengoHall - Upper Saddle River, NJ 07458

Languages i1n terms of applications

e One of the most beneficial uses of assembly language programming is real-time
applications.

e Real time means the task required by the application must be completed before any
other input to the program that will alter its operation can occur

* For example the device service routine which controls the operation of the floppy
disk drive is a good example that is usually written in assembly language

e Assembly language not only good for controlling hardware devices but also
performing pure software operations

— searching through a large table of data for a special string of characters
— Code translation from ASCII to EBCDIC
— Table sort routines
— Mathematical routines
e Assembly language: perform real-time operations
e High-level languages: Those operations mostly not critical in time.

_ The x86 PC
Fj_E ARS U_f_'q Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Pren'gelHall - Upper Saddle River, NJ 07458

Converting Assembly Language

Instructions to Machine Code

OPCODE D (W | MOD REG R/M 000

N N\l _/
YT Y

e Aninstruction can be coded with 1 to 6 bytes

. Byte 1 contains three kinds of information:

— Opcode field (6 bits) specifies the operation such as add, subtract, or move
— Register Direction Bit (D bit)
e Tells the register operand in REG field in byte 2 is source or destination operand
— 1:Data flow to the REG field from R/M
— 0: Data flow from the REG field to the R/M
— Data Size Bit (W bit)
e Specifies whether the operation will be performed on 8-bit or 16-bit data
— 0: 8 bits
— 1:16 bits
e Byte 2 has two fields:
— Mode field (MOD) — 2 bits
— Register field (REG) - 3 bits
— Register/memory field (R/M field) — 2 bits

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Pren'gz-lall - Upper Saddle River, NJ 07458

* REG field is used to identify the register for the first operand

REG W=0 W=1
000 AL AX
001 cL CX
010 DL DX
011 BL BX
100 AH SP
101 CH BP
110 DH S|

111 BH DI

i The x86 PC
]-‘j_E ARS U_f_‘l Assembly Language, Design, and Interfacing

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Pren'33Hall - Upper Saddle River, NJ 07458

2-bit MOD field and 3-bit R/M field together specify the second operand

CODE EXPLANATION
00 Memory Mode, no displacement
follows*®
01 Memory Mode, 8-bit

displacement follows

10 Memory Mode, 16-bit
displacement follows

11 Register Mode (no
displacement)

*Except when R/M = 110, then 16-bit
displacement follows

{a)

MOD =11 EFFECTIVE ADDRESS CALCULATION

R/M | W=0 | w=1 R/M MOD =00 MOD =01 MOD =10
| 000 | AL AX 000 | (BX)+(Sh (BX)+(SH+D8 | (BX)+(Sl)+D16

001 cL cX 001 | (BX)+(DI) (BX)+(D)+D8 | (BX)+(DI)+D16

010 DL DX 010 | (BP)+(Sh (BP)+(SN+D8 | (BP)+(Sh+D16

ot1 BL BX 011 | (BP)+(DI) (BP)+(D)+D8 | (BP)+(DI)+D16

100 | AH SP 100 | (S (Sl)+ D8 (SN +D16

101 CH 8P 101 | (O {Dl) + D8 (DI} + D16

10 | DH sl 110 | DIRECT ADDRESS | (BP)+D8 (BP)+D16

111 BH DI 11| (8X) (BX)+ D8 (BX)+D16

(b)

PEA

RSON

The x86 PC

Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Pren'gﬂHall - Upper Saddle River, NJ 07458

2.6: FULL SEGMENT DEFINITION

the emu8086 assembler
* A simple, popular assembler for 8086 Assembly

language programs is called emu8086.

[} edit: C:\emu80861MySourcemycode.asm =10l x|
file edit bookmarks assembler emulator math ascicodes help
[= we . H . | 23] p'of v &
new open examples save compile emulate | calculator convertor | options help about
i multi—segment executabhle file template. —

; flat assembler syntax

format MZ
entry code_seg:istart ; set entry point

stack 256

segment data_seg
; add your data
DATAL DB 52H
g?H

heret

DATAZ DB

SUM DB |

See emu8086 screenshots on page 80 - 82 of your textbook.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.6: FULL SEGMENT DEFINITION

the emu8086 assembler

SemuB08e’\MySource\mycode.asm

=10 x|

1 edit: C

file edit bookmarks assembler emulator math ascicodes help

[= we . H . = 23] » v &
new open examples save compile emulate | calculator convertor | options help abouk
; multi—segment executabhle file template. -

; flat assembler syntax

variahles) =10l x|
ZIZE; Ihyte Tl elements: |1
edit | shiow az: |hEH "’I

format MZ

entry code_seg:start ; set entry poi

stack 256 = |
segmen Download the emu8086 Lem—
Sl assembler from this website:

DA]

/ﬁsa http:// www.emu8086.com |

See a Tutorial on how to use it at:
http://www.MicroDiqitalEd.com

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.6: FULL SEGMENT DEFINITION

EXE vs. COM files

e The EXE file is used widely as it can be of any size.

— There are occasions when, due to a limited amount of memory,
one needs to have very compact code.

e COM files must fit in a single segment.
— The x86 segment size is 64K bytes, thus the COM file cannot be
larger than 64K.
e To limit the size to 64K requires defining the data inside
the code segment and using the end area
of the code segment for the stack.

— In contrast to the EXE file, the COM file has no separate data
segment definition.

_ The x86 PC
Fj_E ARS U_f_'q Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.6: FULL SEGMENT DEFINITION

EXE vs. COM files

e The header block, which occupies 512 bytes of memory, precedes every EXE
file.

— It contains information such as size, address location
in memory, and stack address of the EXE module.

— The COM file does not have a header block.

Table 2-2: EXE vs. COM File Format

EXE File ECOM File
unlimited size maximum size 64K bytes
stack segment is defined no stack segment definition
data segment is defined data segment defined in code segment
code, data defined at any offset address| code and data begin at offset 0100H
larger file (takes more memory) smaller file (takes less memory)

PEARSON Z’;fﬁf,f Lcanguage, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.7: FLOWCHARTS AND PSEUDOCODE

structured programming

e Structured programming uses three basic types
of program control structures:
— Sequence.
— Control.
— Iteration.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.7: FLOWCHARTS AND PSEUDOCODE

structured programming

e Principles a structured program should follow:
— The program should be designed before it is coded.

e By using flowcharting or pseudocode, the design is clear
those coding, as well as those maintaining the program later.

— Use comments within the program and documentation.

e This will help other figure out what the program does
and how it does it.

— The main routine should consist primarily of calls to subroutines that
perform the work of the program.

e Sometimes called top-down programming.

e Using subroutines to accomplish repetitive tasks saves
time in coding, and makes the program easier to read.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.7: FLOWCHARTS AND PSEUDOCODE

* Principles a structured program should follow:

— Data control is very important.

e The programmer should document the purpose of each variable, and which
subroutines might alter its value.

e Each subroutine should document its input/output variables, and which input
variables might be altered within it.

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.7: FLOWCHARTS AND PSEUDOCODE

flowcharts
e Flowcharts use graphic symbols to (fermine!)
represent different types of program Process

operations.

— The symbols are connected together
to show the flow of execution of the

program.
e Flowcharting has been standard Subroutine
industry practice for decades.
— Flowchart templates help you draw / (;Jlf}'f,tf /
the symbols quickly and neatly.
Connector
O

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.7: FLOWCHARTS AND PSEUDOCODE

pseudocode

e An alternative to flowcharts, pseudocode, involves
writing brief descriptions of the flow of the code.

— SEQUENCE is executing instructions one after the other.

l

Statement |

:

Statement 2

l

Figure 2-15 Statement |

SEQUENCE
Pseudocode vs. Flowchart Statement 2

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.7: FLOWCHARTS AND PSEUDOCODE

pseudocode

e An alternative to flowcharts, pseudocode, involves
writing brief descriptions of the flow of the code.
— IF-THEN-ELSE and IF-THEN are control programming structures,

which can indicate one statement or a group
of statements.

|
i
I
I Pt
Figure 2-16 Condition
IF-THEN-ELSE ' 9
Pseudocode vs. Flowchart [F (condition) THEN
Statement 1
ELSE
Statement 2 t | Statement | Statement 2
I
|
i »ﬁ)*
1
I
|
o The x86 PC
F_E ARS U_N Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.7: FLOWCHARTS AND PSEUDOCODE

pseudocode

e An alternative to flowcharts, pseudocode, involves writing brief
descriptions of the flow of the code.

— |F-THEN-ELSE and IF-THEN are control programming structures,
which can indicate one statement or a group
of statements.

Figure 2-17
IF-THEN IF (condition) THEN
Pseudocode vs. Flowchart Statement |
Statement |
(i)
:
i
I
o The x86 PC
F_E ARS U_N Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.7: FLOWCHARTS AND PSEUDOCODE

pseudocode

e An alternative to flowcharts, pseudocode, involves writing brief
descriptions of the flow of the code.

— REPEAT-UNTIL and WHILE-DO are iteration control structures,
which execute a statement or group of statements repeatedly.

| ¥
i —| Statement 1
Figure 2-18 :
REPEAT-UNTIL RE; E:‘T .
atemen !
Pseudocode vs. Flowchart UNTIL (condition) No

REPEAT-UNTIL structure always |
executes the statement(s) at least
once, and checks the condition ' 1%3
after each iteration.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.7: FLOWCHARTS AND PSEUDOCODE

pseudocode

e An alternative to flowcharts, pseudocode, involves
writing brief descriptions of the flow of the code.

— REPEAT-UNTIL and WHILE-DO are iteration control structures,
which execute a statement or group of statements repeatedly.

Figure 2-19
WHILE-DO WHILE (condition) DO
Pseudocode vs. Flowchart Himoel

Statement |

WHILE-DO may not execute the
statement(s) at all, as the condition
is checked at the beginning of

each iteration.

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.7: FLOWCHARTS AND PSEUDOCODE

control structures

rriE PROG2-1 (EXE) ~ PURPDSE: ADDS 5 BYTES OF DATA i
MDDEL SMALL .
LSTRCE 4 * i Count = 5
Count =5 !
.DATA .
DATA_IN DB 25H, 12H, 15H, 1FH, 2BH | Repeat
=N Bl ? Y ! Add next byte
COTE " Add one byte i [ncrement pointer
MATH EROC FAR i Decrement count
::E‘ ﬁh:’i_:”ﬁ]"' i Until Count =10
-P'Cl‘:’ :":;,.,‘: jset up loop counter CH=5 Increment i
MOV BX,OFFSET DATA IN ;set up data pointer BY pointer ' Store SUM
MO AL, O iinitialize AL !
ACDD AL, BX — ' !
Decrement i
Flowchart vs. pseudocode for Program counter 5
showing steps for §
initializing/decrementing counters. §
no yes :
Housekeeping, such as initializing the I ;
data segment register in the MAIN - §
fore i
procedure are not included in the SUM ;
flowchart or pseudocode. i
Stap i
_ The x86 PC
BTLSISDN (ssembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.7: FLOWCHARTS AND PSEUDOCODE

control structures

e The purpose of flowcharts or pseudocode is to show the program
flow, and what the program does.

— Pseudocode gives the same information as a flowchart,
in @ more compact form.

e Often written in layers, in a top-down manner.

— Code specific to a certain language or operating platform
is not described in the pseudocode or flowchart.

e |deally, one could take a flowchart or pseudocode
and code the program in any language.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

Assembly Language

e There is a one-to-one relationship between assembly and
machine language instructions

e What s found is that a compiled machine code

implementation of a program written in a high-level language
results in inefficient code

— More machine language instructions than an assembled

version of an equivalent handwritten assembly language
program

e Two key benefits of assembly language programming
— |t takes up less memory
— It executes much faster

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson PrenisoHall - Upper Saddle River, NJ 07458

2.2: ASSEMBLE, LINK, AND RUN A PROGRAM

e There are assembler & linker programs.

— Many editors or word processors can be used to create
and/or edit the program, and produce an ASCII file.

— The steps to create an executable Assembly language program
are as follows:

Step Input Program Qutput
1. Edit the program keyboard editor myfile.asm
2. Assemble the program | myfile.asm | MASM or TASM | myfile.obj
3. Link the program myfile.obj LINK or TLINK myfile.exe
PEARSON ﬁ’;fe’,‘,‘ff,f Lcanguage, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.2: ASSEMBLE, LINK, AND RUN A PROGRAM

e The source file must end in ".asm*”.

— The ".asm" file is assembled by an assembler, like MASM or
EMU8086 etc.

e The assembler will produce an object file and a list file, along with
other files useful to the programmer.

e The extension for the object file must be ".obj".

— This object file is input to the LINK program, to produce
the executable program that ends in ".exe".

— The ".exe" file can be run (executed) by the microprocessor.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

ORG 100h is a compiler directive (it tells compiler how to handle
the source code). This directive is very important when you work
with variables. It tells compiler that the executable file will be loaded
at the offset of 100h (256 bytes), so compiler should calculate the
correct address for all variables when it replaces the variable names
with their offsets. Directives are never converted to any real
machine code.

Why executable file is loaded at offset of 100h? Operating system
keeps some data about the program in the first 256 bytes of the

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.2: ASSEMBLE, LINK, AND RUN A PROGRAM

EDITOR
PROGRAM

Before feeding the ".obj" file ,L tnyfile.as

into LINK, all syntax errors ASSEMBLER
must be corrected. PROGRAM
Fixing these errors will not myfile.lst ..I I_,. myfile.crf

guarantee the program will
work as intended, as the program

may contain conceptual errors. LINKER
PROGRAM

myfile.obj +_ other obj files

l - myfile.map

myfile.exe

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.2: ASSEMBLE, LINK, AND RUN A PROGRAM

LINKing the program

e The assembler creates the opcodes, operands & offset addresses under the
".obj" file.

e The LINK program produces the ready-to-run program with the ".exe"
(EXEcutable) extension.

— The LINK program sets up the file so it can be loaded
by the OS and executed.

e The program can be run at the OS level, using the following command: C>myfile

— When the program name is typed in at the OS level, the OS loads the
program in memory.

e Referred to as mapping, which means that the program is mapped into
the physical memory of the PC.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.2: ASSEMBLE, LINK, AND RUN A PROGRAM

TITLE directives

— It is common to put the NAME of the PROGRAM
immediately after the TITLE pseudo-instruction.

e And a brief description of the function of the program.

— The text after the TITLE pseudo-instruction cannot be
exceed 60 ASCII characters.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

 The sequence of commands used to tell a microcomputer what to do is
called a program

« Each command in a program is called an instruction
« 8088 understands and performs operations for 117 basic instructions

« The native language of the IBM PC is the machine language of the
8088

« A program written in machine code is referred to as machine code

« In 8088 assembly language, each of the operations is described by
alphanumeric symbols instead of just Os or 1s.

ADD AX, BX

e T~

Opcode Source operand

Destination operand

_ The x86 PC
Fj_E ARS U_f_'q Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Pren1'57Hall - Upper Saddle River, NJ 07458

2.0: ASSEMBLY LANGUAGE

e An Assembly language program is a series of statements, or lines.

— Either Assembly language instructions, or statements called
directives.

e Directives (pseudo-instructions) give directions to the
assembler about how it should translate the Assembly
language instructions into machine code.

e Assembly language instructions consist of four fields:
[label:] mnemonic [operands][;comment]
— Brackets indicate that the field is optional.
e Do not type in the brackets.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.1: DIRECTIVES AND A SAMPLE PROGRAM

* The program loads AL & BL with DATA1 & DATAZ2,
ADDs them together, and stores the result in SUM.

; THE FORM OF AN ASSEMBLY LANGUAGE PROGRAM
;NOTE: USING SIMPLIFIED SEGMENT DEFINITION
.MODEL SMALL
.STACK 04
.DATA
DATAL DB 52H
DATAZ DB 29H
SUM DB ?
.CODE
MAIN PROC FAR ;this 1s the program entry point
MOV AX, @DATA ; load the data segment address
MOV DS, AX ;assign value to DS
MOV AL, DATA] ;get the first operand
MOV BL, DATAZ2 ;get the second operand
ADD AL, BT, radd the operands
MOV SUM, AL ;store the result in location SUM
MOV AH, 4CH ;set up to return to 0OS
INT 21H ;
MAIN ENDP
END MAIN ;this 1s the program exit point

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.1: DIRECTIVES AND A SAMPLE PROGRAM

assembly language instructions

[Iabel:]‘mnemonic [operands][;comment]

e The label field allows the program to refer to a line of
code by name.

— The label field cannot exceed 31 characters.

e A label must end with a colon when it refers to an
opcode generating instruction.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.1: DIRECTIVES AND A SAMPLE PROGRAM

assembly language instructions

[Iabel:]‘mnemonic [operandSI[;Comment]

e The mnemonic (instruction) and operand(s) fields
together accomplish the tasks for which the program

was written.

apD | | AL, BL
Mov | | ax, 6764

— The mnemonic opcodes are ADD and MOV.

— "AL,BL" and "AX,6764" are the operands.

e Instead of a mnemonic and operand, these fields could
contain assembler pseudo-instructions, or directives.

e Directives do not generate machine code and are used
only by the assembler as opposed to instructions.

e The x86 PC
Fj_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.1: DIRECTIVES AND A SAMPLE PROGRAM

assembly language instructions

[label:]‘mnemonic [operands]u;comment]

DATAL DB 52H

DATAZ DB 29H

SUM DE ?

MAIN PROC FAR ;this is the program entry point
MOV A, BDATA ;load the data segment address
MOV DS, AX ;assign value to DS
MOV AL, DATA] ;get the first operand
MOV BL, DATAZ ;get the second operand
ADD AL.BL radd the operands
MOV SUM, AL ;store the result in location SUM
MOV AH, 4CH ;set up to return to 0OS
INT 21H ;

MAIN ENDP

i The x86 PC
RLRICU (ssembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.1: DIRECTIVES AND A SAMPLE PROGRAM

assembly language instructions

[label:] mnemonic [operands][;comment] ‘

e The comment field begins with a ;" and may be at the
end of a line or on a line by themselves.
— The assembler ignores comments.

e Comments are optional, but highly recommended to
make it easier to read and understand the program.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.4: CONTROL TRANSFER INSTRUCTIONS

rules for names in Assembly language

e The names used for labels in Assembly language programming consist of...
— Alphabetic letters in both upper- and lowercase.
— The digits 0 through 9.
— Question mark (?); Period (.); At (@)
— Underline (_); Dollar sign (S)
e Each label name must be unique.
— They may be up to 31 characters long.
e The first character must be an alphabetic or special character.
— It cannot be a digit.

— The period can only be used as the first character.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION

x86 data types

e The 8088/86 processor supports many data types.

— Data types can be 8- or 16-bit, positive or negative.

e The programmer must break down data larger than
16 bits (0000 to FFFFH, or 0 to 65535 in decimal).

— A number less than 8 bits wide must be coded as
an 8-bit register with the higher digits as zero.

e A number is less than 16 bits wide must use all 16 bits.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

Compiler directives

Syntax for a variable declaration:
name DB value
name DW value

DB - stays for Define Byte.
DW - stays for Define Word.

name - can be any letter or digit combination, though it should start with a letter.
It's possible to declare unnamed variables by not specifying the name (this variable
will have an address but no name).

value - can be any numeric value in any supported numbering system
(hexadecimal, binary, or decimal), or "?" symbol for variables that are not
initialized.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION

DB define byte

e One of the most widely used data directives, it allows
allocation of memory in byte-sized chunks.
— This is the smallest allocation unit permitted.

— DB can define numbers in decimal, binary, hex, & ASCII.
e D after the decimal number is optional.
e B (binary) and H (hexadecimal) is required.
e To indicate ASCII, place the string in single quotation marks.

e DB is the only directive that can be used to define ASCII
strings larger than two characters.
— It should be used for all ASCII data definitions.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION

DB define byte

e Some DB examples:

DATAL DB Vo ; DRCIMAL

DATAZ DB 10001001B ;s BINARY

DATA3 DB LZH s HEX
QRG 0010H

DATA4 DB tangl! ;ASCII NUMBERS
ORG 0018H

DATAS DB ? ;oET ASIDE A BYTH

ORG 0020H
DATAG DB |My name 1is JDE1 ;ASCII CHARACTERS

— Single or double quotes can be used around ASCI|
strings.

e Useful for strings, which should contain a single quote,
such as "O'Leary".

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.1: DIRECTIVES AND A SAMPLE PROGRAM

data segment

e The DB directive is used by the assembler to allocate
memory in byte-sized chunks.

— Each is defined as DB (define byte).
e Memory can be allocated in different sizes.

— Data items defined in the data segment will be
accessed in the code segment by their labels.

e DATA1 and DATA2 are given initial values in the data
section.

e SUM is not given an initial value.
— But storage is set aside for it.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

DataTypes and Data Definition

DATA1 DB 25
DATA2 DB 10001001b
DATA3 DB 12h

ORG 0010h ;indicates distance from initial DS location
DATA4 DB “2591”

ORG 0018h ;indicates distance from initial DS location
DATA5 DB ?

This is how data is initialized in the data segment

0000 19
0001 89
0002 12
0010 32353931
0018 00

The x86 PC

PEARSON

PO :_,,; 1 crtaEiine Q0K Pea on_Hoione a artion ne.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson PrenffoHall - Upper Saddle River, NJ 07458

DB DW DD

data ii ; how it looks like in memory EE
MESSAGE2 DB '1234567' »31323334353637 "
MESSAGE3 DW 6667H » 67 66 :
datal db 1,2,3 123 "
db 45h " 45
db 'a’ s 61
db 11110000b FO .
data2 dw 12,13 0C 000D 00 EE
dw 2345h 14523 1
dd 300h 20030000 o eeaaaa.lll
PEARSON Z’;fe’;ff,f Lcanguage, Design, and Interfucing ©2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prent"FcIHall - Upper Saddle River, NJ 07458

More Examples

DB 6 DUP(FFh); fill 6 bytes with ffh

DW 954
DW 253Fh ; allocates two bytes
DW 253Fh

DD 5C2A57F2h ;allocates four bytes
DQ 12h ;allocates eight bytes

COUNTER1 DB COUNT
COUNTER2 DB COUNT

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prenffz-lall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION

DB define byte

e List file for DB examples.

]-‘j_E ARS U_H Assembly Language, Design, and Interfacing

0000 19 DATA1 DB 25 :DECIMAL
0001 89 DATA2 DB 100010018 :BINARY
0002 12 DATA3 DB 12H :HEX
0010 ORG 0010H
0010 32 35 39 31 DATA4 DB *2591° ;ASCII NUMBERS
0018 ORG 0018H
0018 00 DATAS DB ? SET ASIDE A BYTE
0020 ORG 0020H
0020 4D 79 20 6E 61 6D DATA6 DB ‘My name is Joe® ;ASCII CHARACTERS
65 20 69 73 20 4A
6F 65
The x86 PC

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION

DW define word

e DW is used to allocate memory 2 bytes (one word) at a

time:
ORG 70H
DATAL1 DW 954 ;s DECIMAL
DATALZ DW 1001010101008 s BINARY
DATAL3 DW 253FH s HEX
ORG 78H
DATA1A4 DW 9,2, FACH, 0D1LBRE00R,. 5, "THEY #MISC. DATA
DATALS DW 8 DUP (?) ;SET ASIDE 8 WORDS
e List file for DW examples.
0070 ORG 70H
0070 03BA DATAIl DW 954 :DECIMAL
0072 0954 DATA12 DW 1001010101008 :BINARY
0074 253F DATAI3 DW 253FH ;HEX
0078 ORG 78H
0078 0009 0002 0007 000C DATAI4 DW 9.2.7,0CH,00100000B,5, HI’ :MISC. DATA
0020 0005 4849
0086 0008] DATAILIS DW 8 DUP(?) ;SET ASIDE 8 WORDS
2779]
i The x86 PC
BTLSISDN (ssembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION

EQU equate

EQU associates a constant value with a data label.

— When the label appears in the program, its constant value will be
substituted for the label.

— Defines a constant without occupying a memory location.
e EQU directive assigns a symbolic name to a string or constant.
— Maxint equ Offffh
— COUNTEQU 2
e EQU for the counter constant in the immediate addressing mode:
COUNT EQU 25

e Assume a constant (a fixed value) used in many different places in the
data and code segments. By use of EQU, one can change it once and
the assembler will change all of them.

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION

DD define doubleword

e The DD directive is used to allocate memory locations that are 4 bytes (two
words) in size.

— Data is converted to hex & placed in memory locations
e Low byte to low address and high byte to high address.

ORG OO0AOCH

DATALG®G DD 1023 ; DECIMAL
DATAL7 DD 10001001011001011100B ; BINARY
DATALS DD 5C2A57F2H ; HEX
DATALS DD 23H,34789H, 65533

e List file for DD examples.

00AQ0 ORG 00AOH
00A0 000003FF DATAI6 DD 1023 :DECIMAL
00A4 0008965C DATALI7 DD 10001001011001011100B :BINARY
00A8 S5C2AS57F2 DATA18 DD 5C2A57F2H :HEX
00AC 00000023 00034789 DATA19 DD 23H,34789H.,65533
0000FFFD
i The x86 PC
BTLSISDN (ssembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION

DQ define quadword

e DQis used to allocate memory 8 bytes (four words) in size, to
represent any variable up to 64 bits wide:

ORG 00CQOH
DATAZ20 DO 4h23C2H s HEX
DATAZ1 DO THI' ;ASCITI CHARACTERS
DATAZZ DO & s NOTHING

e List file for DQ examples.

00C0O ORG 00COH
00C0O C223450000000000 DATA20 DQ 4523C2H ;HEX
00C8 4948000000000000 DATA21 DQ ‘HI ;ASCII CHARACTERS
00D0 0000000000000000 DATA22 DQ ? JNOTHING
i The x86 PC
BTLSISDN (ssembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION

directives

e Figure 2-7 shows the memory dump of the data section,
including all the examples in this section.

— |t is essential to understand the way operands are stored in
memory.

-D 1066:0 100

1066:0000 19 89 12 00 00 00 00 00-00 00 00 00 00 00 00 00 ..ieiveviineennn.
1066:0010 32 35 39 31 00 00 00 00-00 00 OO0 OO 00 00 00 00 2591............
1066:0020 4D 79 20 6E 61 6D 65 20-69 73 20 4A 6F 65 00 00 My name 1is Joe..
1066:0030 FF FF FF FF FF FF 00 O00-FF FF FF FF FF FF 00 00iieieeeeennn
1066:0040 00 00 00 00 00 0O 00 00-00 00 00 00 00 00 00 00 ..vuiviiininennnn
1066:0060 63 63 63 63 63 63 63 63-63 63 00 00 00 00 00 00 cccccceceec.e.o.nn.
1066:0070 BA 03 54 09 3F 25 00 00-09 00 02 00 07 00 0C 00 :.T.?%....cvnnn.
1066:0080 20 00 05 00 4F 48 00 00-00 00 00 00 00 00 00 00 ...0H......oiun.
1066:0090 00 00 00 0O OO OO 0O 00-00 00 00 00 00 00 00 00 ..ieieiiininonnn.
1066:00A0 FF 03 00 00 5C 96 08 00-F2 57 2A 5C 23 00 00 00\...rW<\#...
1066:00B0 89 47 03 00 ¥FD FF 00 00-00 00 00 00 00 00 00 OO0 B#E...... IH.....
1066:00C0O0 C2 23 45 00 00 00 00 00-49 48 00 00 00 00 00 00iveiininnennn.
1066:00D0 00 00 00 00 00 0O 00 00-00 00 00 00 00 00 00 00 ..veiveviniuennn.
1066:00E0 29 98 56 43 79 86 00 00-00 00 00 00 00 00 00 00 9.VCyO..........

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION

directives

o All of the data directives use the little endian format.

— For ASCII data, only DB can define data of any length.

e Use of DD, DQ, directives for ASCII strings of more
than 2 bytes gives an assembly error.

-D 1066:0 100

1066:0000 19 89 12 00 00 00 00 00-00 00 00 00 00 00 00 00 ..ieiveviineennn.
1066:0010 32 35 39 31 00 00 00 00-00 00 OO0 OO 00 00 00 00 2591............
1066:0020 4D 79 20 6E 61 6D 65 20-69 73 20 4A 6F 65 00 00 My name 1is Joe..
1066:0030 FF FF FF FF FF FF 00 O00-FF FF FF FF FF FF 00 00iieieeeeennn
1066:0040 00 00 00 00 00 0O 00 00-00 00 00 00 00 00 00 00 ..vuiviiininennnn
1066:0060 63 63 63 63 63 63 63 63-63 63 00 00 00 00 00 00 cccccceceec.e.o.nn.
1066:0070 BA 03 54 09 3F 25 00 00-09 00 02 00 07 00 0C 00 :.T.?%....cvnnn.
1066:0080 20 00 05 00 4F 48 00 00-00 00 00 00 00 00 00 00 ...0H......oiun.
1066:0090 00 00 00 0O OO OO 0O 00-00 00 00 00 00 00 00 00 ..ieieiiininonnn.
1066:00A0 FF 03 00 00 5C 96 08 00-F2 57 2A 5C 23 00 00 00\...rW<\#...
1066:00B0 89 47 03 00 ¥FD FF 00 00-00 00 00 00 00 00 00 OO0 B#E...... IH.....
1066:00C0O0 C2 23 45 00 00 00 00 00-49 48 00 00 00 00 00 00iveiininnennn.
1066:00D0 00 00 00 00 00 0O 00 00-00 00 00 00 00 00 00 00 ..veiveviniuennn.
1066:00E0 29 98 56 43 79 86 00 00-00 00 00 00 00 00 00 00 9.VCyO..........

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION

directives

e Review "DATA20 DQ 4523C2", residing in memory
starting at offset OOCOH.

— C2, the least significant byte, is in location 00CO0, with
23 in 00C1, and 45, the most significant byte, in 00C2.

-D 1066:0 100
1066:0000 19 89 12 00 00 00 00 00-00 00 00 00 00 00 00 00 ..ieiveviineennn.
1066:0010 32 35 39 31 00 00 00 00-00 00 OO0 OO 00 00 00 00 2591............
1066:0020 4D 79 20 6E 61 6D 65 20-69 73 20 4A 6F 65 00 00 My name 1is Joe..
1066:0030 FF FF FF FF FF FF 00 O00-FF FF FF FF FF FF 00 00iieieeeeennn
1066:0040 00 00 00 00 00 0O 00 00-00 00 00 00 00 00 00 00 ..vuiviiininennnn
1066:0060 63 63 63 63 63 63 63 63-63 63 00 00 00 00 00 00 cccccceceec.e.o.nn.
1066:0070 BA 03 54 09 3F 25 00 00-09 00 02 00 07 00 0C 00 :.T.?%....cvnnn.
1066:0080 20 00 05 00 4F 48 00 00-00 00 00 00 00 00 00 00 ...0H......oiun.
1066:0090 00 00 00 0O OO OO 0O 00-00 00 00 00 00 00 00 00 ..ieieiiininonnn.
1066:00A0 FF 03 00 00 5C 96 08 00-F2 57 2A 5C 23 00 00 00\...rW<\#...
- 00-00 00 00 00 00 00 00 00 B#E...... IH.....
00-49 48 00 00 00 00 00 00
00-00 00 00 00 00 00 00 00 ... oo
00-00 00 00 00 00 00 00 00 9.VCyo..........

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION

directives

e When DB is used for ASCIl numbers, it places them
backwards in memory.

— Review "DATA4 DB '2591"" at origin 10H:32,
e ASCII for 2, is in memory location 10H;35; for 5, in 11H; etc.

-D 1066:0 100

1066:0000 19 89 12 00 00 00 00 00-00 00 00 00 00 00 00 00ewuueuwuueonn.
EO66:OOIO 32 35 39 31 00 00 0O 00-00 00 OO OO 0O 00 00 00 2591............
1066:0020 4D 79 20 ok ol oD 6> 20-69 /3 20 4A 6f o> 00 00 My name 1s Joe.
FE
00

1066:0030 FF FF FF FF FF 00 O00-FF FF FF FF FF FF 00 00 ...iiieieenennn.
1066:0040 00 QO 00 00 00 00 00-00 0O 00 00 00 00 00 00 w.iveviiuiiinnn..
1066:0060 63 63 63 63 63 63 63 63-63 63 00 00 00 00 00 00 cccccceceec.e.o.nn.
1066:0070 BA 03 54 09 3F 25 00 00-09 00 02 00 07 00 0C 00 :.T.?%....cvnnn.
1066:0080 20 00 05 00 4F 48 00 00-00 00 00 00 00 00 00 00 ...0H......oiun.
1066:0090 00 00 00 0O OO OO 0O 00-00 00 00 00 00 00 00 00 ..ieieiiininonnn.
1066:00A0 FF 03 00 00 5C 96 08 00-F2 57 2A 5C 23 00 00 00\...rW<\#...
1066:00B0 89 47 03 00 ¥FD FF 00 00-00 00 00 00 00 00 00 OO0 B#E...... IH.....
1066:00C0O0 C2 23 45 00 00 00 00 00-49 48 00 00 00 00 00 00iveiininnennn.
1066:00D0 00 00 00 00 00 0O 00 00-00 00 00 00 00 00 00 00 ..veiveviniuennn.
1066:00E0 29 98 56 43 79 86 00 00-00 00 00 00 00 00 00 00 9.VCyO..........

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

More assembly — OFFESET, SEG, EQU

o OFFSET

— The offset operator returns the distance of a label or variable from the
beginning of its segment. The destination must be 16 bits

— mov BX, offset count
e SEG

— The segment operator returns the segment part of a label or variable’s
address.

Push DS

Mov AX, seg array
Mov DS, AX

Mov BX, offset array

Pop DS

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prenfg?—lall - Upper Saddle River, NJ 07458

DUP (Duplicate)

e DUP operator only appears after a storage allocation directive.
— db 20 dup(?)

number DUP (value(s))
number - number of duplicate to make (any constant value).

value - expression that DUP will duplicate.

for example:

c DB 5 DUP(9)

is an alternative way of declaring:
cDB9,99,09,9

one more example:

d DB 5 DUP(1, 2)

is an alternative way of declaring:
dbDB1,2,1,2,1,2,1,2,1,2

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION

DUP duplicate

e DUP will duplicate a given number of characters.

ORG 0030H

DATAY} DB OFFH,0FFH, OFFH, OFFH,OFFH, OFFH ;FILL ¢ BYTES WITH EF
ORG 38H

DATA8 DB 6 DUP(OFFH) ;FILL 6 BYTES WITH FF

; the following reserves 32 bytes of memory with no initial
7 value given
ORG 40H
DATAS DB 32 DUP (?) rabll ABIDE 32 BYTES
;DUP can be used inside another DUP
; the following fills 10 bytes with 99
DATA1O DB 5 DUP (2 DUP (99)) ;FILL 10 BYTES WITH 99

— Two methods of filling six memory locations with FFH.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION

DUP duplicate

e List file for DUP examples.

0030 ORG 0030H

0030 FF FF FF FF FF FF DATA7 DB OFFH,0FFH.OFFH,0FFH.OFFH.OFFH : 6 FF

0038 ORG 38H

0038 0006[eE DATAS DB 6 DUP(UFFH} :FILL 6 BYTES WITH FF

0040] ORG 40H

0040 Uﬂ%g [DATA9 DB 32 DUP(?) :SET ASIDE 32 BYTES

¥ |

0060 ORG 60H

0060 0005] 0002 DATAI10 DB 5 DUP (2 DUP (99)) :FILL 10 BYTES WITH 99
63
] |

i The x86 PC
F__E ARS U_P_‘-I Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

The PTR Operator - Byte or word or doubleword?

e [NC[20h]; is this byte/word/dword? or
e MOV [SI],5

— Is this byte 057

— |s this word 00057

— Oris it double word 000000057

e To clarify we use the PTR operator
— INC BYTE PTR [20h]
— INC WORD PTR [20h]
— INC DWORD PTR [20h]
e or for the MOV example:
— MOV byte ptr [SI],5
— MOV word ptr[SI],5

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson PrenngHall - Upper Saddle River, NJ 07458

The PTR Operator

e Would we need to use the PTR
operator in each of the following?

MOV AL,BVAL MOV AL,BVAL
MOV DL,[BX] MOV L[]

’ SUB [BX],byte ptr 2
SUB [BX];Z MOV CL,byte ptr WVAL
MOV CL WVAL ADD AL,BVAL+1
ADD AL,BVAL+1
.data

BVAL DB 10H,20H
WVAL DW 1000H

e The x86 PC
]:j_E ARS U_f_\l Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prenf87Hall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION

ORG origin

e ORG is used to indicate the beginning of the offset
address.

— ORG 100h is a compiler directive (it tells compiler how to handle the source code). This
directive is very important when you work with variables. It tells compiler that the executable
file will be loaded at the offset of 100h (256 bytes), so compiler should calculate the correct
address for all variables when it replaces the variable names with their offsets. Directives are
never converted to any real machine code.

rnernory (1] at: | Dizazzemble from: |
8BS 6 : (8180 8BS 6 : |8180
ORG 100h s lotae joass]
o101+ - MOU BX, [©6109h]
: - RET
MOV AL, varl @194: 1E 630 i |Pl]P ES ;
@165 : A7 0A9 XOR AL, B812h
MOV BX, var2 A1me: Al #ot O ADD [BX + SI], AL
; - ADD [BX + S5I], AL
I R
H ADD [BX + 5I], AL
RET ; stops the program. aiep: 2o 9ag ADD Eax + s:}, AL
@1PD: BA BOG ADD [BX + SI], AL
A1BE: A8 AAA ADD [BX + SI], AL
VAR DB 7 g mmosa
2 DW 1234h oii1: 08 800 |1 (000 Tox + s1]) AL
var 4|) |Lr| ADD [BX + 5I], AL ;I
i The x86 PC
Fj_E A RSU_P_‘J Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

Equivalent code using only DB

ORG 100h
DB 0OAOh
memary [1K] at: | Dizassemble from: | DB 08h
IﬂBEﬁ . |ﬂ1 80 IﬂBEﬁ . |n1m1 DB 01h
@1009: AB 168 A P8
aipi: D8 Dos HOU BX, [08189h]
@1@3: BB 139 1 RET
@1i@4: 1E B30 i [POP ES - DB 8Bh
B105: B3 063 XOR AL, 812h| DB 1Eh
: - ADD [BX + SI], AL DB 09h
@1@9: 34 B52 4| ADD [BX + SI], AL
oz g2 ely <l| fonn fox - 117 o8 01h
A1iAC: 0P PPO ADD [BX + SI], AL
A16D: 08 GO :gg Egi + gi}. :t
A1PE: AP BAA + ,
mios: g0 geg | fooo fox o o1l P 0c3h
@111: 0P ARG ADD [BX + SI], AL
A117 - AR RAR *| |ADD [BX + 5I], AL
4 | »| |aDD [BX + SI], AL =] DB 7
DB 34h
DB 12h
e The x86 PC
BTLSISDN (ssembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

Procedures

e A procedure is a group of instructions designed to
accomplish a specific function.

— A code segment is organized into several small procedures to
make the program more structured.
e Every procedure must have a name defined by the PROC
directive.

— Followed by the assembly language instructions, and closed by
the ENDP directive.

e The PROC and ENDP statements must have the same label.

— The PROC directive may have the option FAR or NEAR.

e The OS requires the entry point to the user program
to be a FAR procedure.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

Procedures

e The syntax for procedure declaration:

name PROC
; here goes the code
; of the procedure ...
RET
name ENDP

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

Example Proc

ORG 100h
main proc ; this is optional but very strongly recommended
MOV AL 1
MOV BL, 2

CALL m2
CALL m2
CALL m2
CALL m2

RET ; return to operating system.
main endp ; this is optional but very strongly recommended

m2 PROC
MUL BL ; AX = AL * BL.
RET ; return to caller.
m2 ENDP

END ;main program should end with END

_ The x86 PC
Fj_E ARS U_f_\l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

assembly language subroutines

MATHN

MATHN

.CODE
FROC
MOV
MOV
CALL
C?‘LLT.I
CALL
MOV
INT
ENDFP

FAR

BX, BDATA
DS, AX
SUBR1
SUBRZ
SUBR3

;THIS 15 THE ENTRY POINT FOR OS

AH, 4CH
21H

SUBR]

SUER1

PROC

EET
ENCE

SUBRZ

SUBRZ

PROC

EET
ENDFP

It is common to have one main program and
many subroutines to be called from the main.

Each subroutine can be a separate module,
tested separately, then brought together.

L
SUBR3

SUEER3

FPROC

RET
ENDFE

r

END

MAIMN

s THIS IS THE EXIT POINT

]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

The x86 PC

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.3: MORE SAMPLE PROGRAMS

various approaches to Program 2-1

e Variations of Program 2-1 clarify use of addressing
modes, and show that the x86 can use any general-
purpose register for arithmetic and logic operations.

;from the data segment:

DATAIL DB Z5H

DATAZ DB 12H

DATAZ DE 15H

DATAA DB TFH

DATAD DE ZBH

sUM DB °?

;from the code segment:

MOV AL,DATA] ; MOVE DATAL1 INTO AL

ADD AL, DATAZ ;ADD DATAZ TO AL
ADD AL,DATAS

ADD AL,DATA4
ADD AL,DATAS
MOV SUM, AL ; SAVE AL IN SUM

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.3: MORE SAMPLE PROGRAMS

TITLE ADD 5 BYTES

org 100h
DATA IN DB 25H,12H,15H, 1FH, 2BH
SUM DB ?

MAIN PROC FAR
MOV AX, @DATA
MOV DS, AX
MOV CX, 5
MOV BX, OFFSET DATA IN
MOV AL, 0
CALL ADDC
MOV SUM, AL
MOV AH, 4CH
INT 21H
RET
MAIN ENDP
ADDC PROC ; A PROCEDURE USED!!!!!!
AGAIN: ADD AL, [BX]

INC BX
DEC CX
JNZ AGAIN
RET
ADDC ENDP
END
_ The x86 PC
Fj_E ARS U_f_\l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.3: MORE SAMPLE PROGRAMS

analysis of Program 2-1

e Program 2-1, explained instruction by instruction:
— "MOV CX,05" will load the value 05 into the CX register.
e Used by the program as a counter for iteration (looping).

— "MOV BX,OFFSET DATA_IN" will load into BX the
offset address assigned to DATA_IN.

e The assembler starts at offset 0000? and uses memory for
the data, then assigns the next available offset memory for SUM (in this
case, 0005).

— "ADD AL,[BX]" adds the contents of the memory location pointed at by the
register BX to AL.

e Note that [BX] is a pointer to a memory location.

— "INC BX" increments the pointer by adding 1 to BX.
e This will cause BX to point to the next data item. (next byte)

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.3: MORE SAMPLE PROGRAMS

analysis of Program 2-1

e Program 2-1, explained instruction by instruction:

— "DEC CX" will decrement (subtract 1 from) the CX
counter and set the zero flag high if CX becomes zero.

— "JNZ AGAIN" will jump back to the label AGAIN as
long as the zero flag is indicating that CX is not zero.

e "JNZ AGAIN" will not jump only after the zero flag has
been set high by the "DEC CX" instruction (CX becomes
Zero).

— When CX becomes zero, this means that the loop is
completed and all five numbers have been added to AL

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.3: MORE SAMPLE PROGRAMS

analysis of Program 2-2

Write a program that adds four words of data and saves the result. The values will be 234DH,1DE6H,
3BC7H and 566AH. Verify the result is: D364H

TITLE ADDS_4_words_data

ORG 100H

DATA_IN DW 234DH, 1DE6H, 3BC7H,566AH

ORG 10H

SUM DW ? ; The 16-bit data (a word) is stored with the low-order byte first, referred to as "little

endian.”

MAIN PROC FAR
MOV AX,@DATA
MOV DS, AX
MOV CX,4
MOV DI, OFFSET DATA_IN
MOV BX,00 ADD_16 PROC
CALL ADD_16 ADD_LP: ADD BX,[DI]
MOV SI, OFFSET SUM INCDI
MOV [SI], BX INC DI
MOV AH, 4CH DEC CX

’ JNZ ADD_LP

INT 21H RET

MAIN ENDP ENDP ADD_16

END

i The x86 PC
BTLSISDN (ssembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.3: MORE SAMPLE PROGRAMS

analysis of Program 2-2

e The address pointer is incremented twice, since the operand being
accessed is a word (two bytes).

— The program could have used "ADD DI,2" instead of using "INC
DI" twice.

e "MOV SI,OFFSET SUM" was used to load the pointer for the
memory allocated for the label SUM.

e "MOV [SI],BX" moves the contents of register BX to memory
locations with offsets 0010 and 0011.

e Program 2-2 uses the ORG directive to set the offset addresses for
data items.

— This caused SUM to be stored at DS:0010.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

Example program

Copy the contents of a block of memory (X bytes) starting at location Sl to another
block of memory starting at Dlh

MOV AX,2000

MOV DS,AX
MOV SI, 100
MOV DI, 120

MOV CX, 10

NXTPT: MOV AH, [SI]
MOV [DI], AH
INC SI
INC DI
DEC CX
JNZ NXTPT

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prenb":o[ﬂll - Upper Saddle River, NJ 07458

2.3: MORE SAMPLE PROGRAMS

analysis of Program 2-3

e ACTUAL EXAMPLE TO RUN

TITLE TRANSFER_6_BYTES
ORG 100H
DATA_IN DB 25H,4FH,85H,1FH,2BH,0C4H
ORG 10H
COPY DB 6 DUP (?)
MAIN PROC FAR
MOV AX,@DATA
MOV DS, AX
MOV SI,OFFSET DATA_IN
MOV DI,OFFSET COPY
MOV CX, 06H
MOV_LOOP: MOV AL,[SI]
MOV [DI],AL
INC SI
INC DI
DEC CX
JNZ MOV_LOOP
MOV AH,4CH
INT 21H
MAIN ENDP
END

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.3: MORE SAMPLE PROGRAMS

analysis of Program 2-3

e C4 was coded in the data segments as 0C4.
— Indicating that C is a hex number and not a letter.
e Required if the first digit is a hex digit A through F.
e This program uses registers SI & DI as pointers
to the data items being manipulated.
— The first is a pointer to the data item to be copied.
— The second points to the location the data is copied to.

e With each iteration of the loop, both data pointers
are incremented to point to the next byte.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.6: FULL SEGMENT DEFINITION

segment definition

e The SEGMENT and ENDS directives indicate the beginning &ending of a
segment, in this format:

label SEGMENT [options]
;place the statements belonging to this segment here
label ENDS

— The label, or name, must follow naming conventions and be unique.

e The [options] field gives important information to the
assembler for organizing the segment, but is not required.

— The ENDS label must be the same label as in the SEGMENT directive.
e |n full segment definition, the ".MODEL" directive is not used.

LABEL SEGMENT DATA
DATA_IN DB 25H,4FH,85H,1FH,2BH,0C4H
ORG 10H
COPY DB 6 DUP (?)

END SEGMENT DATA

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.6: FULL SEGMENT DEFINITION

segment definition

; FULL SEGMENT DEFINITION ;SIMPLIFIED FORMAT
;—— stack segment —- .MODEL SMALL
namel SEGMENT .STACK 64
DB ¢4 DUP (?) ;
namel ENDS i
;—— data segment —- ;
nameZ SEGMENT . DATA
;place data definitions here ;place data definitions here
name?2 ENDS ;
;—— code segment —- ;
name3 SEGMENT .CODE
MAIN PROC FAR MAIN PROC FAR
ASSUME ... MOV AX, @DATA
MOV A¥X, name? MOV DS, AX
MOV DS, AX
MAIN ENDP MAIN ENDP
name3 ENDS END MATN
END MATHN Figure 2-8
The x86 PC

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

2.6: FULL SEGMENT DEFINITION

segment definition

* using full segment definition.

TITLE PURPOSE: ADDS 4 WORDS OF DATA
PAGE 60,132
sT5RG SEGMENT
DB 32 DUP (?)
STS5EG ENDS
DTSEG SEGMENT
DATA IN DW 234DH, 1DE6H, 3BCTH, 566AH
ORG 10H
SUM DW i
DTSEG ENDS
CDSEG SEGMENT
MAIN PROC FAR
ASSUME CS:CDSEG,DS:DTSEG, SS:STSEG
MOV AX,DTSEG
MOV DS, AX
MOV C¥,04 ;set up loop counter CX=4
HWW data pointer DI
T [

See the entire program listing on page 78 of your textbook.

_ The x86 PC
Fj_E ARS U_f_\l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.6: FULL SEGMENT DEFINITION

segment definition
 rewritten using full segment definition.

TITLE TRANSFER
STSEG SEGMENT
DB 32 DUP (?)

STSEG ENDS
DTSEG SEGMENT
ORG 10H
DATA IN DB 25H, 4FH, 85H, 1FH, 2BH, 0C4H
ORG 28H
COPY DB 6 DUP (?)
DTSEG ENDS

CDSEG SEGMENT
MAIN PROC FAR

ASSUME CS:CDSEG, DS:DTSEG, SS:STSEG
MOV AX,DTSEG

MOV DS, AX

MOV SI, OFFSET DATA IN

MOV DI, OFFSET COPY

MOV CX, 06H

MOV _LOOP: MOV AL, [SI]

MOV [DI],AL

INC SI

INC DI

DEC CX

JNZ MOV _LOOP

MOV AH, 4CH

INT 21H

MAIN ENDP

CDSEG _ENDS

END MATN

e The x86 PC
_E ARS U_f_\l Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

P

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.6: FULL SEGMENT DEFINITION

stack segment definition

* The stack segment shown contains the line
"DB 64 DUP (?)"to reserve 64 bytes of memory

for the stack.

STSEG SEGMENT ;the "SEGMENT" directive begins the segment
DB 64 DUP (?) ;this segment contains only one line
STSEG ENDS ;the "ENDS" segment ends the segment
i The x86 PC
]-‘j_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.6: FULL SEGMENT DEFINITION

data segment definition

e |n full segment definition, the SEGMENT directive names the data
segment and must appear before the data.

— The ENDS segment marks the end of the data segment:

DTSEG SEGMENT ;the SEGMENT directive begins the segment
;define your data here
DTSEG ENDS ;the ENDS segment ends the segment

e The code segment also begins and ends with SEGMENT and ENDS

directives:

CDSSEG SEGMENT ;the SEGMENT directive begins the segment
;your code 1s here

CDSEG ENDS ;the ENDS segment ends the segment

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.6: FULL SEGMENT DEFINITION

code segment definition

e |Immediately after PROC, the ASSUME directive, associates
segments with specific registers.

— By assuming the segment register is equal to the segment
labels used in the program.

e |f an extra segment had been used, ES would
also be included in the ASSUME statement.

— ASSUME tells the assembler which of the segments, defined by
SEGMENT, should be used.

e Also helps the assembler to calculate the offset
addresses from the beginning of that segment.

e |n"MOV AL, [BX] " the BX register is the offset of the data
segment.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.6: FULL SEGMENT DEFINITION

code segment definition

e On transfer of control from OS to the program, of
the three segment registers, only CS and SS have the
proper values.

— The DS value (and ES) must be initialized by the program.

MOV AX,DTSEG ;DTSEG 1s the label for the data segment
MOV DS, AX
i The x86 PC

Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

data segment
DATA IN DW 234DH, 1DE6H, 3BC7H,566AH
SUM DW ? ;referred to as "little endi

ends

stack segment
dw 128 dup(0)

ends

code segment
main proc
start:

end main
ends

mov
mov
MOV
MOV
MOV
ADD

ax,data

ds,ax

CX,4

DI, OFFSET DATA IN
BX, 00

LP: ADD BX, [DI]

INC
INC
DEC
JNZ
MOV
MOV
MOV
INT
ret

DI
DI

cX

ADD LP

SI, OFFSET SUM
[SI], BX

AH, 4CH

21H

The x86 PC
Assembly Language, Design, and Interfacing

PEARSON

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.4: CONTROL TRANSFER INSTRUCTIONS

conditional jumps

e Conditional jumps have mnemonics such as JNZ (jump not zero)
and JC (jump if carry).

— In the conditional jump, control is transferred to a new location
if a certain condition is met.

— The flag register indicates the current condition.

e For example, with "JNZ label", the processor looks at the zero flag
to see if it is raised.

— If not, the CPU starts to fetch and execute instructions from the
address of the label.

— If ZF = 1, it will not jump but will execute the next instruction
below the JNZ.

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.4: CONTROL TRANSFER INSTRUCTIONS

conditional jumps

Table 2-1: 8086 Mnemonic | Condition Tested “Jump IF ...”
Conditional JA/INBE (CF =10) and (ZF = 0) above/not below nor zero
Jump Instructions JAE/INB CF=0 above or equal/not below

JB/INAE CF =1 below/not above nor equal

JBE/INA (CF or ZF) = 1 below or equal/not above

JE CF =1 carry

JE/Z ZF =1 equal/zero
:‘:?;?m{?i?;;:la :gtfslj'i:k?'g? JG/INLE ((SF xor OF) or ZF) =0 greater/not less nor equal
e tinigenied valuss: P JGE/INL (SF xor OF) =0 greater or equal/not less
“greater” and “less” refer JL/INGE (SF xor OR) =1 less/not greater nor equal
o the relanondupotova | 1 B/TNG ((SF xor OF) or ZF) = | less or equal/not greater
L JNC CF=0 not carry

JNE/INZ ZF =10 not equal/not zero

JNO OF =0 not overflow

JNP/JPO PF =0 not parity/parity odd

JNS SF =0 not sign

JO OF = 1 overflow

JP/JPE PF =1 parity/parity equal

JS SF =1 sign

PEARSON Z’;fﬁf,f Lcanguage, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.4: CONTROL TRANSFER INSTRUCTIONS

short jumps

e All conditional jumps are short jumps.

— The address of the target must be within -128 to +127 bytes of
the IP.

e The conditional jump is a two-byte instruction.
— One byte is the opcode of the J condition.
— The second byte is a value between 00 and FF.
e An offset range of 00 to FF gives 256 possible addresses.

e |najump backward, the second byte is the
2's complement of the displacement value

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.4: CONTROL TRANSFER INSTRUCTIONS

CALL statements

e For control to be transferred back to the caller, the last
subroutine instruction must be RET (return).

— For NEAR calls, the IP is restored..
e Assume SP = FFFEH:

12B0:0200 BBR1295 MOV BX, 9512 12
12B0:0203 EBFA00 CALL 0300

12B0:0206 B82F14 MOV AX,142F 05

Xd

— Since this is a NEAR call, only IP EFFEC 06
is saved on the stack.

e The IP address 0206, which belongs FFFD 02

to the "MOV AX,142F" instruction, FFFE
is saved on the stack.

dl

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.4: CONTROL TRANSFER INSTRUCTIONS

short jumps

e The last instruction of the called subroutine must be a
RET instruction that directs the CPU to POP the top 2
bytes of the stack into the IP and resume executing at
offset address 0206.

— The number of PUSH and POP instructions (which alter the SP)
must match.
e For every PUSH there must be a POP.

12B0:0300 53 PUSH BX
12B0: 0201 s 54 sawu

12B0:0309 5B POP BX
12B0:030A C3 RET

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

Jd 98X =YL

Buidepsiul pue ‘ubisep ‘ebenbue| A|quissse

fifth

edition

Prentice Hall

Dec Hex Bin
00000010

ENDS ; THREE

The x86 PC

assembly language,
design, and interfacing
fifth edition

MUHAMMAD ALI MAZIDI
JANICE GILLISPIE MAZIDI
DANNY CAUSEY

